I. Blood Chemistries

Sodium: Hyponatremia

<table>
<thead>
<tr>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg. Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most abundant cation in EXTRAcellular fluid
 Maintains osmotic pressure of extracellular fluid
 Regulates renal retention & excretion of water
 Responsible for stimulation of neuromuscular reactions & maintains SBP</td>
<td>Serum below 135 mEq/L
 Critical RED FLAG: <120</td>
<td>Excess sodium loss through N-V-D, skin and kidneys
 Excess diuretic dosage
 Liver Failure
 CHF
 Increased hypotonic IV fluids</td>
<td>Sodium containing IV fluids
 Lactated Ringers
 NS 0.9% or 3%</td>
<td>THINK VOLUME
 Monitor electrolytes
 Monitor vital signs
 Monitor neurological responses
 Mental Status
 Headaches
 Monitor fluids/I&O for overload
 Weights daily
 Cardiac overload-CHF
 Monitor musculoskeletal-cramps/ weakness/tremor</td>
</tr>
<tr>
<td>Sodium: Hypernatremia</td>
<td>Serum above 145 mEq/L
 Critical RED FLAG: >160</td>
<td>Dehydration-fluid loss through N-V-D (water loss in excess of salt loss) or excessive sweating
 Diabetes-DKA
 Fever</td>
<td>Replace fluids
 D5%
 Diuretics- Excrete excess volume and excrete (sodium is then concentrated with fluid volume deficit)</td>
<td>THINK VOLUME
 Monitor electrolytes
 Monitor vital signs
 Mental Status
 Weight/I&O
 Monitor for seizures</td>
</tr>
</tbody>
</table>

Potassium: Hypokalemia

<table>
<thead>
<tr>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg. Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most abundant INTRAcellular cation and is essential for transmission of electrical impulses in cardiac and skeletal muscle
 Helps maintain acid-base balance and has inverse relationship to metabolic pH…decrease in pH of 0.1 (acidosis) increases K+ by 0.6 mEq/L
 80-90% K+ filtered through the kidney</td>
<td>Serum below 3.5 mEq/L
 Critical RED FLAG: <2.5</td>
<td>Inadequate intake of K+
 ETOH abuse
 CHF/HTN
 GI Loss-V&D
 Renal Loss
 Diuretics-Loop: Furosemide (Lasix) Bumetadine (Bumex)</td>
<td>Oral or Parenteral Potassium
 Diet high in potassium
 Balanced electrolyte solutions
 Pedialyte
 Sports drinks</td>
<td>THINK ELECTRICITY
 Monitor electrolytes
 Monitor vital signs-low BP
 Monitor cardiac responses
 Irregular heart rate and rhythm for increased ectopy-PVC’s/VTach</td>
</tr>
<tr>
<td>Potassium: Hyperkalemia</td>
<td>Ranges</td>
<td>Causes</td>
<td>Treatments</td>
<td>Nsg Considerations</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Normal: 3.5-5.0 mEq/L</td>
<td>Serum above 5.0 mEq/L</td>
<td>*Metabolic acidosis *Dehydration *Excess potassium intake *Potassium sparing diuretics *Tissue damage-Burns (K+ goes out of cell) *Renal Failure</td>
<td>*Insulin- Moves K+ into the cell *D50- Prevents hypoglycemia caused by the infusion of Insulin *IV Calcium Gluconate also given at the same time to counteract cardiac effects of potassium *Sodium Bicarbonate- treats the acidosis caused when K+ moves into the cell and pushes hydrogen ions into the serum</td>
<td>THINK ELECTRICITY *Monitor electrolytes *Monitor cardiac responses *Monitor musculoskeletal cramps, weakness, parasthesias *Peaked T wave/wide QRS *Monitor neurological responses, mental status, headache *Irregular heart rate and rhythm for increased ectopy-PVC's/Vtach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnesium: Hypomagnesemia</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal: 1.6-2.6 mg/dL</td>
<td>Serum below 1.6 mg/dL</td>
<td>*Chronic Alcoholism *GI Loss-V&D *Impaired absorption *Renal Disease *Pancreatitis</td>
<td>*Treat underlying cause *GI Loss *Give Magnesium replacement</td>
<td>THINK NEUROMUSCULAR TRANSMISSION THINK CARDIAC RESPONSE *Monitor electrolytes *Monitor vital signs *Tachycardia *Hypertension *Tremors, tetany, paresthesias *Muscle weakness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnesium: Hypermagnesemia</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal: 1.6-2.6 mg/dL</td>
<td>Serum above 2.6 mg/dL</td>
<td>*Dehydration *Severe metabolic acidosis *Renal Failure *Tissue trauma</td>
<td>*Treat underlying cause *Renal patients treat with dialysis *Monitor cardiac effects of magnesium-increased PVC's-VT *Give Calcium Gluconate</td>
<td>THINK NEUROMUSCULAR TRANSMISSION THINK CARDIAC RESPONSE *Monitor electrolytes *Monitor vital signs *Bradycardia *Hypotension *Muscle weakness</td>
</tr>
<tr>
<td>Calcium: Hypocalcemia</td>
<td>Patho</td>
<td>Ranges</td>
<td>Causes</td>
<td>Treatments</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| Normal: 8.2-10.6 mg/dL | *Most abundant cation in body and necessary for almost all vital processes*
Half of total body calcium circulates as free ions that participate in coagulation, neuromuscular conduction, intracellular regulation, control of skeletal and cardiac muscle contractility
98-99% calcium reserves stored in teeth and skeleton | Serum below 8.2 mg/dL
Critical RED FLAG: <7 | *ETOH abuse*
Pancreatitis
Chronic renal failure
Inadequate intake
Decreased Vitamin D (Sunshine)
Lack of weight bearing
Loop Diuretics
Hypomagnesemia | Oral Calcium carbonate/gluconate
Calcium chloride (more irritating to the vein)
Watch for extravasate into subcutaneous tissue | **THINK MUSCLE RESPONSE**
Monitor electrolytes
Monitor vital signs
Cardiac Output decreased
Hypotension
Dysrhythmias
Monitor neuromuscular responses: seizures, tetany, paresthesias, muscle spasms |

<table>
<thead>
<tr>
<th>Calcium: Hypercalcemia</th>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
</table>
| Normal: 8.2-10.6 mg/dL | *End product of creatine metabolism which is performed in skeletal muscle*
Small amount of creatine is converted to creatinine which is then secreted by kidneys
Amount of creatinine generated proportional to mass of skeletal muscle | Serum above 10.6 mg/dL
Critical RED FLAG: >12 | *Prolonged immobilization*
Dehydration
Cancer
Excess Antacid Intake | *Eliminate Calcium through kidneys through IV fluids*
Loop diuretic to promote elimination of calcium | **THINK MUSCLE RESPONSE**
Monitor electrolytes
Monitor vital signs Hypertension
Monitor GI: N&V-anorexia
Dysrhythmias |

<table>
<thead>
<tr>
<th>Creatinine</th>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
</table>
| Normal: 0.5-1.2 mg/dl | *Gold standard for kidney function because creatinine is produced in consistent quantity and rate of clearance reflects glomerular filtration* | Serum above 1.2 mg/dl
Increased in:
CHF
Dehydration
Acute & chronic renal failure
Shock | Decreased in:
Decreased skeletal muscle
Inadequate protein intake | Correct underlying problem
Fluid resuscitation to keep SBP>90
Dialysis | **THINK FLUID BALANCE**
Assess I&O closely
Fluid restriction
Assess for signs of fluid retention/edema |
** Blood Urea Nitrogen (BUN) **

Normal: 10-20 mg/dl

<table>
<thead>
<tr>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea represents end product of protein metabolism performed in the liver. Urea diffuses freely in intra/extracellular fluid and then excreted by kidneys. BUN reflects balance between production and excretion of urea. Ratio to creatinine is 15-24:1 (if creatine 1.0 expected BUN should be 15-24). Is indirect measurement of renal function but does not reflect glomerular filtration.</td>
<td>Critical RED FLAG: >100</td>
<td>Decreased in: Poor protein intake/malnutrition, Liver disease, Malabsorption syndromes.</td>
<td>* Fluid resuscitation-HIGH * Dialysis-HIGH * Improve nutritional intake/Failure to thrive-LOW</td>
<td>THINK FLUID BALANCE * Assess I&O closely * Fluid restriction * Assess for signs of fluid retention/edema * Assess for agitation, confusion, fatigue, *N&V-HIGH * Assess liver profile labs for correlating liver damage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased in:</td>
<td>Anemia Cancer Fluid retention/overload Hemorrhage</td>
</tr>
<tr>
<td>Increased in:</td>
<td>COPD CHF Dehydration Polycythemia</td>
</tr>
</tbody>
</table>

** Hematology **

| Hemoglobin-HGB | Critical RED FLAG: <6 or >18 | Range of Anemias: Mild Hgb 10-12 g/dl-asymptomatic Moderate: Hgb 6-10 g/dl weakness, fatigue, palpitations, SOB, decreased tol to activity-orthostatic hypotension Severe: Hgb < 6 g/dl Hypoxia: confusion, SOB, skin pallor and MM and nailbeds, dizziness, weakness, tachycardia | Clinical Uses: Detect blood loss, anemia and response to treatment. Detect any possible blood disorder. | * Correct underlying problem * Blood transfusions if symptomatic |
|----------------|--|--|--|

** II. Hematology **

* Primary protein of erythrocytes that is composed of heme (iron) and globin (protein) * Carries O2 to cells and CO2 back to lungs * Parallels Hematocrit which is the % of RBC in proportion to total plasma volume. * GOLD Standard for evaluating blood/RBC adequacy (anemia, blood loss)
<table>
<thead>
<tr>
<th>Patho</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatments</th>
<th>Nsg Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Blood Cell Count (WBC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Normal: 4,500-11,000 mm³ | *WBC represent primary defense against invading infections*
This is a total count of all 5 leukocytes: neutrophils, lymphocytes, eosinophils, basophils, and monocytes
Indicates overall degree of body’s response to pathology, but must be evaluated and correlated through differential count
Elevated WBC due to significant increase in one differential-usually the neutrophil
Physiologic stress or steroids will increase WBC
Critical RED FLAG: <2500 or >15,000 | Decreased in:
- ETOH abuse
- Anemia
- Bone marrow depression
- Viral infections
*Increased in:
- Infection
- Anemia
- Inflammatory disorders
- Steroid use (acute or chronic)* | *Identify infectious process*
Confirm bone marrow depression in chemo/radiation therapy
THERINK INFECTION
*Low or elevated WBC can represent sepsis
Assess closely for hypotension with known infection (septic shock)
Assess closely for any change in temperature trend-hypothermia or febrile can both represent sepsis especially in elderly |
| **Neutrophils** | | | | |
| Normal: 50-70% of differential | *Most predominant differential WBC- comprise 50-70% of all WBC’s*
First line of defense against bacterial infection through phagocytosis (think pacman)
BANDS- if present on differential-correlate with overwhelming sepsis. Immature neutrophils body is kicking into circulation before they are ready because of the severity of infection/sepsis | Critical RED FLAG: >80%
*Increased in:
- Infection
- Acute hemorrhage
- Physical stress
- Tissue necrosis/injury* | *Identify infectious process*
Confirm bone marrow depression in chemo/radiation therapy
THERINK INFECTION
*Low or elevated WBC can represent sepsis
Assess closely for hypotension with known infection (septic shock)
Assess closely for any change in temperature trend-hypothermia or febrile can both represent sepsis especially in elderly |
III. Cardiac

Troponin

Normal: <0.05 ng/ml
This may vary depending on each hospital lab

<table>
<thead>
<tr>
<th>Path</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatment</th>
<th>Nsg Considerations</th>
</tr>
</thead>
</table>
| *Contractile protein found in cardiac muscle that will be released into systemic circulation with cardiac ischemia or acute MI*
*Levels will rise 2-6 hours after injury-peak 16-24 hours and then remain elevated for several days
If acute onset CP to r/o MI they will be done every 6 hours x3 to determine pattern of abnormal elevation | Critical RED FLAG: ANY ELEVATION
If elevated this establishes diagnosis of acute MI
If positive MI, the degree of elevation provides general barometer of degree of heart muscle damage | Increased in:
Acute MI
Unstable angina
Minor myocardial damage after CABG or PTCA/stent placement | *Standards of cardiac care include continuous telemetry, b-blockers to decrease cardiac workload, heparin or nitroglycerin gtt's.
Definitive treatment of MI includes PTCA/stent or CABG | THINK CARDIAC-MI
Assess closely for recurrent or new onset of chest pain
Assess cardiac rhythm for any changes such as PVC’s, VTach or atrial fibrillation
Assess HR and SBP carefully to promote decreased cardiac workload (maintain heart rate <80 and SBP <140)
Assess tolerance to activity closely |

Brain Natriuretic Peptide (BNP)

Normal: <100 ng/L

<table>
<thead>
<tr>
<th>Path</th>
<th>Ranges</th>
<th>Causes</th>
<th>Treatment</th>
<th>Nsg Considerations</th>
</tr>
</thead>
</table>
| *Hormone that is stored in the ventricle of the heart
*When left ventricle is distended and stretched due to CHF exacerbation BNP is released into circulation
Inhibits the release of renin by kidneys which promotes water and sodium loss as well as increases glomerular filtration rate (Body’s own ACE inhibitor!)* | 100-500 ng/L abnormal but not critical for ventricular strain (mild)
Critical RED FLAG: >500 critical for positive correlation of HF exacerbation | *CHF exacerbation
*Ventricular hypertrophy (cardiomyopathy)
Severe hypertension | *Aggressive diuresis for fluid overload
May be on NTG gtt or po Nitrates to decrease preload which decreases workload of heart | THINK CARDIAC-HF
*Assess respiratory status for tachypnea and breath sounds closely for basilar or scattered crackles
Assess HR and SBP carefully to promote decreased cardiac workload (heart rate <80 and SBP <140)
*Assess tolerance to activity closely
*Assess I&O closely
Assess K+ closely with loop diuretics |

References